Intramolecular proton transfer of 2-hydroxy-1-naphthaldehyde semicarbazone and thiosemicarbazone in ground and lowest excited singlet states: A comparative experimental and computational study

نویسندگان

  • Debosreeta Bose
  • Nitin Chattopadhyay
چکیده

Photophysics of 2-hydroxy-1-naphthaldehyde semicarbazone (2HNS) and the corresponding thiosemicarbazone (2HNT) are explored in n-heptane and methanol as solvents, focusing on the intramolecular proton transfer (IPT) in the ground (S0) and the first excited singlet (S1) states using absorption, steady state and time-resolved fluorometric techniques. The feasibility of the IPT process in the two molecular systems has also been compared. Experiments confirm that for both the compounds IPT takes place in the lowest excited singlet state (S1), but not in the ground state (S0). Ab-initio quantum chemical calculations provide support to the experimental findings. Simulated potential energy curves (PEC) in the two electronic states imply that the IPT process is endothermic in the S0 state but becomes exothermic in the S1 state for both the probes. PECs also reveal that compared to the ground state the activation barrier for the IPT process is reduced appreciably in the S1 state. The IPT process, thus, becomes feasible both thermodynamically and kinetically in the S1 state but not in the S0 state. The experiments and calculations, however, reveal that the excited state intramolecular proton transfer process is relatively more viable for 2HNS compared to 2HNT. Further, the work demonstrates that any of the suitably chosen structural parameters leading to the unique transition state and yielding the same values of the reaction parameters can be taken as the reaction coordinate to follow the progress of the intramolecular prototropic process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DFT-based comparative study on the excited states intramolecular proton transfer in 1-hydroxy-2-naphthaldehyde and 2-hydroxy-3-naphthaldehyde

Potential energy (PE) curves for the intramolecular proton transfer in the ground (GSIPT) and excited (ESIPT) states of 1-hydroxy-2naphthaldehyde (1H2NA) and 2-hydroxy-3-naphthaldehyde (2H3NA) were studied using DFT/B3LYP(6-31G) and TD-DFT/ B3LYP(6-31G) level of theory, respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer for both the compounds...

متن کامل

Inequivalence of substitution pairs in hydroxynaphthaldehyde: A theoretical measurement by intramolecular hydrogen bond strength, aromaticity, and excited-state intramolecular proton transfer reaction

The inequivalence of substitution pair positions of naphthalene ring has been investigated by a theoretical measurement of hydrogen bond strength, aromaticity, and excited state intramolecular proton transfer (ESIPT) reaction as the tools in three substituted naphthalene compounds viz 1-hydroxy-2-naphthaldehyde (HN12), 2-hydroxy-1-naphthaldehyde (HN21), and 2-hydroxy-3-naphthaldehyde (HN23). Th...

متن کامل

Excited-State Intramolecular Proton Transfer and Rotamerism of 2-(2′-hydroxyvinyl)benzimidazole and 2-(2′-hydroxyphenyl)imidazole

The intramolecular proton transfer of 2-(2′-hydroxyvinyl)benzimidazole (HVBI) and 2-(2′-hydroxyphenyl)imidazole (HPI) in the ground state and in the 1ππ*, 1nπ*, and 3ππ* excited states has been studied at the HF/CIS/D95** level of theory. Their rotamerism reaction in the ground and 1ππ* excited states has been also analyzed. These systems are two different fragments of 2-(2′-hydroxyphenyl)benzi...

متن کامل

Theoretical characterization of intramolecular proton transfer in the ground and the lowest-lying triplet excited states of 1-amino-3-propenal: a methodological comparison

Several theoretical methods are employed to characterize the intramolecular proton transfer in the ground state and in the lowest-lying 3nπ∗ and 3ππ∗ excited states of 1-amino-3-propenal. The geometrical parameters, the relative energy of the two tautomeric forms, the energy barrier for the proton transfer, and the energy difference between the ground and the excited states predicted by the dif...

متن کامل

به کاربردن تقریب دو حالته در تولید هیدروژن با فرود آمدن پروتون بر روی پوزیترونیوم

Although there is no experimental data available for antihydrogen formation following antiprotons impact on positroium atoms, as a charge transfer reaction, at incident energies which are suitable for antimatter high-precision spectroscopic studies, measurements were carried out for its charge-conjugate reaction i. e. hydrogen formation, by protons impact on positronium. In this study, a two-st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014